Lyftrondata
  • Introduction
    • About Lyftrondata
    • Lyftrondata Feature
    • Lyftrondata System Architecture
      • Lyftrondata Integration Framework
      • Lyftrondata Connector Framework
    • Core Concepts
      • Data Pipelines
      • Vision and Goals
      • Sources and Destinations
        • Types of Sources
        • Types of Destination
    • Free Trial
    • Lyftrondata Apps
      • Data Loader
        • Full Load
        • Incremental Load
      • Data Mirror
        • Prerequisite
        • Integration
      • Data Vault
      • ELT
      • ETL
      • Data Analytics
    • Faq
  • Lyftrondata Connectors
    • Source
      • πŸ“ΆSales Analytics
      • πŸ‘¨β€πŸ’»Technology Analytics
      • πŸ’ΈFinance Analytics
      • πŸ“ŠBusiness Analytics
      • 🀝Marketing Analytics
      • πŸ‡ΈπŸ‡΄Commerce Analytics
      • ☁️Weather Analytics
      • πŸ”ƒSupply Chain Analytics
      • ⏳Human Resources Analytics
    • Destinations
  • Managing Lyftrondata
    • Lyftrondata Installation
      • Requirements
      • On AWS Deployment
      • On AWS Deployment Using AMI
      • On Azure Deployment
      • On DigitalOcean Deployment
      • Deployment Info
    • Configure Lyftrondata
      • AWS S3/IAM User
      • Wasabi
      • Settings and Security
  • Developer Guides
    • Understand Lyftrondata
      • Lyftrondata Architecture
      • Libraries and Dependencies Used in Our Application
      • Services used by Lyftrondata
Powered by GitBook
On this page
  1. Introduction

Core Concepts

This manual provides an architectural and conceptual overview of Lyftrondata, which is a self-service data foundation platform for BI and analytics. It describes how the Lyftrondata platform functions, and it lays a conceptual foundation for much of the practical information contained in other manuals. Information in this manual applies to the Lyftrondata platform running on all supported operating systems.

PreviousLyftrondata Connector FrameworkNextData Pipelines

Last updated 1 year ago