Lyftrondata
  • Introduction
    • About Lyftrondata
    • Lyftrondata Feature
    • Lyftrondata System Architecture
      • Lyftrondata Integration Framework
      • Lyftrondata Connector Framework
    • Core Concepts
      • Data Pipelines
      • Vision and Goals
      • Sources and Destinations
        • Types of Sources
        • Types of Destination
    • Free Trial
    • Lyftrondata Apps
      • Data Loader
        • Full Load
        • Incremental Load
      • Data Mirror
        • Prerequisite
        • Integration
      • Data Vault
      • ELT
      • ETL
      • Data Analytics
    • Faq
  • Lyftrondata Connectors
    • Source
      • πŸ“ΆSales Analytics
      • πŸ‘¨β€πŸ’»Technology Analytics
      • πŸ’ΈFinance Analytics
      • πŸ“ŠBusiness Analytics
      • 🀝Marketing Analytics
      • πŸ‡ΈπŸ‡΄Commerce Analytics
      • ☁️Weather Analytics
      • πŸ”ƒSupply Chain Analytics
      • ⏳Human Resources Analytics
    • Destinations
  • Managing Lyftrondata
    • Lyftrondata Installation
      • Requirements
      • On AWS Deployment
      • On AWS Deployment Using AMI
      • On Azure Deployment
      • On DigitalOcean Deployment
      • Deployment Info
    • Configure Lyftrondata
      • AWS S3/IAM User
      • Wasabi
      • Settings and Security
  • Developer Guides
    • Understand Lyftrondata
      • Lyftrondata Architecture
      • Libraries and Dependencies Used in Our Application
      • Services used by Lyftrondata
Powered by GitBook
On this page
  1. Developer Guides
  2. Understand Lyftrondata

Libraries and Dependencies Used in Our Application

Libraries and dependencies details regarding purpose and version are as follow

Library Name
Purpose
Version

Python3-pip

Python package installer for Python 3.x.

21.3.1

Python3-dev

Development files for building Python modules in Python 3.x.

21.3.1

Python3-tk

Tkinter module for Python 3.x, used for GUI applications.

-21.3.1

Python3-venv

Python virtual environment support for Python 3.x.

21.3.1

Redis-server

The image: redis:7.2.4 line in the Dockerfile specifies the Redis image version 7.2.4 to be used. Redis serves as a fast, in-memory data store for caching and messaging within the application's Docker environment, enhancing performance and scalability while ensuring compatibility and consistency across deployments.

7.2.4

Pymssql

MSSQL database adapter for Python version

2.2.5.

Pyyaml

YAML parser and emitter for Python version

5.4.1

Apache-airflow

  • This command installs Apache Airflow version 2.2.0, a platform for orchestrating workflows.

  • Ensure that pip is installed on your system before running this command.

2.2.0

Java

  • OpenJDK is a free and open-source implementation of the Java Platform.

  • This command installs OpenJDK version 11, which is required by Apache Airflow for execution.

11

Node.js v

JavaScript runtime environment for executing JavaScript code server-side.

16.15.1

Yarn

Dependency management tool for JavaScript projects.

1.22.21

Spark & Hadoop

Spark 3.2.2 with Hadoop 3.2 support is a distributed computing system for large-scale data processing. It offers high performance, fault tolerance, and diverse data processing capabilities like batch processing and real-time streaming. Spark simplifies complex data workflows, making it suitable for big data analytics and computation tasks.

spark-3.2.2-bin-hadoop3.2

Python 3.9

Python 3.9 is a major release with enhanced features and performance improvements. It offers new syntax, built-in types, and additional library modules. Python 3.9 improves developer productivity, code readability, and application efficiency

Python 3.9

PostgreSQL

Relational database management system

14

Docker

Used to run and manage containers

26.0.0

Docker Compose

Used to run and manage the multiple containers compose files

v2.25.0

Libraries

Below are the libraries which is used by our UI.

Library
Version

django

3.1.7

django-filter

2.4.0

djangorestframework

3.12.4

django-cors-headers

3.7.0

python-dateutil

2.8.1

python-dotenv

1.0.1

pandas

1.4.1

SQLAlchemy

1.4.17

django-countries

7.2.1

boto3

1.17.79

schedule

1.1.0

requests

2.25.1

psycopg2-binary

2.9.1

getmac

0.8.2

sendgrid

6.7.1

redis

3.5.3

xlrd

2.0.1

openpyxl

3.0.7

selenium

3.141.0

apscheduler

3.7.0

jaydebeapi

1.2.3

Jinja2

3.0.1

django-q

1.0.2

sentry-sdk

1.3.1

pyspark

3.1.2

google-cloud-bigquery

2.34.0

google-auth

1.35.0

django-allauth

0.45.0

drf-yasg

1.20.0

rncryptor

3.3.0

gunicorn

20.1.0

simplejson

3.17.6

psutil

5.9.1

flower

1.2.0

stripe

5.0.0

pdfkit

-

django_otp

1.0.2

dj_rest_auth

2.2.4

dropbox

11.36.2

celery

5.2.7

snowflake-connector-python

3.6.0

django-guardian

2.4.0

PreviousLyftrondata ArchitectureNextServices used by Lyftrondata

Last updated 1 year ago

Info: For lyftrondata installation on the environment follow the

document